高二数学公式总结?高中数学公式总结:圆的公式1、圆体积=4/3(pi)(r^3)2、面积=(pi)(r^2)3、周长=2(pi)r4、圆的标准方程(x-a)2+(y-b)2=r2【(a,b)是圆心坐标】5、圆的一般方程x2+y2+dx+ey+f=0【d2+e2-4f0】椭圆公式1、椭圆周长公式:l=2b+4(a-b)2、那么,高二数学公式总结?一起来了解一下吧。
116定理一条弧所对的圆周角等于它所对的圆心角的一半117推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121①直线l和⊙o相交d<r②直线l和⊙o相切d=r③直线l和⊙o相离d>r122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123切线的性质定理圆的切线垂直于经过切点的半径124推论1经过圆心且垂直于切线的直线必经过切点125推论2经过切点且垂直于切线的直线必经过圆心126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127圆的外切四边形的两组对边的和相等128弦切角定理弦切角等于它所夹的弧对的圆周角129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134如果两个圆相切,那么切点一定在连心线上135①两圆外离d>r+r②两圆外切d=r+r③两圆相交r-r<d<r+r(r>r)④两圆内切d=r-r(r>r)⑤两圆内含d<r-r(r>r)136定理相交两圆的连心线垂直平分两圆的公共弦137定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139正n边形的每个内角都等于(n-2)×180°/n140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141正n边形的面积sn=pnrn/2p表示正n边形的周长142正三角形面积√3a/4a表示边长143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4144弧长计算公式:l=nπr/180145扇形面积公式:s扇形=nπr2/360=lr/2146内公切线长=d-(r-r)外公切线长=d-(r+r)147等腰三角形的两个底脚相等148等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合149如果一个三角形的两个角相等,那么这两个角所对的边也相等150三条边都相等的三角形叫做等边三角形数学归纳法一般地,证明一个与正整数n有关的命题,有如下步骤:(1)证明当n取第一个值时命题成立;(2)假设当n=k(k≥n的第一个值,k为自然数)时命题成立,证明当n=k+1是命题也成立.阶乘:n!=1×2×3×……×n,(n为不小于0的整数)规定0!=1.排列,组合·排列从n个不同元素中取m个元素的所有排列个数,A(n,m)=n!/m!(m是上标,n是下标,都是不小于0的整数,且m≤n)··组合从n个不同的元素里,每次取出m个元素,不管以怎样的顺序并成一组,均称为组合.所有不同组合的种数C(n,m)=A(n,m)/(n-m)!=n!/〔m!·(n-m)!〕(m是上标,n是下标,都是不小于0的整数,且m≤n)◆组合数的性质:C(n,k)=C(n,k-1)+C(n-1,k-1);对组合数C(n,k),将n,k分别化为二进制,若某二进制位对应的n为0,而k为1,则C(n,k)为偶数;否则为奇数◆二项式定理(binomialtheorem)(a+b)^n=C(n,0)×a^n×b^0+C(n,1)×a^(n-1)×b+C(n,2)×a^(n-2)×b^2+...+C(n,n)×a^0×b^n所以,有C(n,0)+C(n,1)+C(n,2)+...+C(n,n)=C(n,0)×1^n+C(n,1)×1^(n-1)×1+C(n,2)×1^(n-2)×1^2+...+C(n,n)×1^n=(1+1)^n=2^n微积分学极限的定义:设函数f(x)在点x.的某一去心邻域内有定义,如果存在常数A,对于任意给定的正数ε(无论它多么小),总存在正数δ,使得当x满足不等式0<|x-x.|<δ时,对应的函数值f(x)都满足不等式:|f(x)-A|<ε那么常数A就叫做函数f(x)当x→x.时的极限几个常用数列的极限:an=c常数列极限为can=1/n极限为0an=x^n绝对值x小于1极限为0导数:定义:f'(x)=y'=lim⊿x→0[f(x+⊿x)-f(x)]/⊿x=dy/dx几种常见函数的导数公式:①C'=0(C为常数函数);②(x^n)'=nx^(n-1)(n∈Q);③(sinx)'=cosx;④(cosx)'=-sinx;⑤(e^x)'=e^x;⑥(a^x)'=(a^x)*Ina(ln为自然对数)⑦(Inx)'=1/x(ln为自然对数)⑧(logax)'=1/(xlna),(a>0且a不等于1)⑨(sinh(x))'=cosh(x)⑩(cosh(x))'=sinh(x)(tanh(x))'=sech^2(x)(coth(x))'=-csch^2(x)(sech(x))'=-sech(x)tanh(x)(csch(x))'=-csch(x)coth(x)(arcsinh(x))'=1/sqrt(x^2+1)(arccosh(x))'=1/sqrt(x^2-1)(x>1)(arctanh(x))'=1/(1-x^2)(|x|<1)(arccoth(x))'=1/(1-x^2)(|x|>1)(chx)‘=shx,(shx)'=chx:(3)导数的四则运算法则:①(u±v)'=u'±v'②(uv)'=u'v+uv'③(u/v)'=(u'v-uv')/v^2(4)复合函数的导数复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数(链式法则):df[u(x)]/dx=(df/du)*(du/dx).[∫(上限h(x),下限g(x))f(x)dx]’=f[h(x)]·h'(x)-f[g(x)]·g'(x)洛必达法则(L'Hospital):是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法.设(1)当x→a时,函数f(x)及F(x)都趋于零;(2)在点a的去心邻域内,f'(x)及F'(x)都存在且F'(x)≠0;(3)当x→a时limf'(x)/F'(x)存在(或为无穷大),那么x→a时limf(x)/F(x)=limf'(x)/F'(x).再设(1)当x→∞时,函数f(x)及F(x)都趋于零;(2)当|x|>N时f'(x)及F'(x)都存在,且F'(x)≠0;(3)当x→∞时limf'(x)/F'(x)存在(或为无穷大),那么x→∞时limf(x)/F(x)=limf'(x)/F'(x).利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意:①在着手求极限以前,首先要检查是否满足0/0或∞/∞型,否则滥用洛必达法则会出错.当不存在时(不包括∞情形),就不能用洛必达法则,这时称洛必达法则失效,应从另外途径求极限.比如利用泰勒公式求解.②洛必达法则可连续多次使用,直到求出极限为止.③洛必达法则是求未定式极限的有效工具,但是如果仅用洛必达法则,往往计算会十分繁琐,因此一定要与其他方法相结合,比如及时将非零极限的乘积因子分离出来以简化计算、乘积因子用等价量替换等.不定积分设F(x)是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数)叫做函数f(x)的不定积分.记作∫f(x)dx.其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数的不定积分的过程叫做对这个函数进行积分.由定义可知:求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C,就得到函数f(x)的不定积分.也可以表述成,积分是微分的逆运算,即知道了导函数,求原函数.·基本公式:1)∫0dx=c;∫adx=ax+c;2)∫x^udx=(x^u+1)/(u+1)+c;3)∫1/xdx=ln|x|+c4))∫a^xdx=(a^x)/lna+c5)∫e^xdx=e^x+c6)∫sinxdx=-cosx+c7)∫cosxdx=sinx+c8)∫1/(cosx)^2dx=tanx+c9)∫1/(sinx)^2dx=-cotx+c10)∫1/√(1-x^2)dx=arcsinx+c11)∫1/(1+x^2)dx=arctanx+c12)∫1/(a^2-x^2)dx=(1/2a)ln|(a+x)/(a-x)|+c;13)∫secxdx=ln|secx+tanx|+c14)∫1/(a^2+x^2)dx=1/a*arctan(x/a)+c15)∫1/√(a^2-x^2)dx=arcsin(x/a)+c;16)∫sec^2xdx=tanx+c;17)∫shxdx=chx+c;18)∫chxdx=shx+c;19)∫thxdx=ln(chx)+c;·分部积分法:∫u(x)·v'(x)dx=∫u(x)dv(x)=u(x)·v(x)-∫v(x)du(x)=u(x)·v(x)-∫u'(x)·v(x)dx.☆泰勒公式(Taylor'sformula)泰勒中值定理:若f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于(x-x0)多项式和一个余项的和:f(x)=f(x0)+f'(x0)(x-x0)+f''(x0)/2!?(x-x0)^2,+f'''(x0)/3!?(x-x0)^3+……+f的n阶导数?(x0)/n!?(x-x0)^n+Rn其中Rn=f(n+1)(ξ)/(n+1)!?(x-x0)^(n+1)为拉格朗日型的余项,这里ξ在x和x0之间.定积分形式为∫f(x)dx(上限a写在∫上面,下限b写在∫下面).之所以称其为定积分,是因为它积分后得出的值是确定的,是一个数,而不是一个函数.牛顿-莱布尼兹公式:若F'(x)=f(x),那么∫f(x)dx(上限a下限b)=F(a)-F(b)牛顿-莱布尼兹公式用文字表述,就是说一个定积分式的值,就是上限在原函数的值与下限在原函数的值的差.微分方程凡是表示未知函数的导数以及自变量之间的关系的方程,就叫做微分方程.微分方程差不多是和微积分同时先后产生的,苏格兰数学家耐普尔创立对数的时候,就讨论过微分方程的近似解.牛顿在建立微积分的同时,对简单的微分方程用级数来求解.后来瑞士数学家雅各布?贝努利、欧拉、法国数学家克雷洛、达朗贝尔、拉格朗日等人又不断地研究和丰富了微分方程的理论.如果在一个微分方程中出现的未知函数只含一个自变量,这个方程就叫做常微分方程特征根法是解常系数齐次线性微分方程的一种通用方法.如二阶常系数齐次线性微分方程y''+py'+qy=0的通解:设特征方程r*r+p*r+q=0两根为r1,r2.1若实根r1不等于r2y=C1*e^(r1x)+C2*e^(r2x).2若实根r=r1=r2y=(C1+C2x)*e^(rx)3若有一对共轭复根r1,2=λ±ib:y=e^(λx)·[C1·cos(bx)+C2·sin(bx)]
高中数学等差数列与等比数列公式总结对比如下:
等差数列: 通项公式:$a_n=a_1+d$,其中$a_1$为首项,$d$为公差,表明数列中的每一项与其前一项之间的差保持不变。 前n项和公式:$S_n=frac{n}{2}$,其中$a_n$为第n项,用于计算等差数列前n项的和。 差数公式:$d=frac{a_na_1}{n1}$,用于计算等差数列中的公差。
等比数列: 通项公式:$a_n=a_1cdot q^{n1}$,其中$a_1$为首项,$q$为公比,表明数列中的每一项都是前一项的$q$倍。 前n项和公式:$S_n=a_1cdotfrac{1q^n}{1q}$,用于计算等比数列前n项的和。注意,当$q=1$时,前n项和公式变为$S_n=na_1$。 比值公式:$q=sqrt[n1]{frac{a_n}{a_1}}$,用于计算等比数列中的公比。
高二数学椭圆公式知识点总结如下:
1. 椭圆定义公式 椭圆是平面内到两个定点F1、F2的距离之和等于常数的动点P的轨迹。 数学表达式为:|PF1|+|PF2|=2a。
2. 椭圆焦点与长短半轴关系 椭圆有两个焦点F1、F2,以及长半轴a和短半轴b。 焦点到椭圆中心的距离c满足:c2=a2b2。
3. 椭圆面积公式 椭圆面积S的计算公式为:S=π×a×b。 其中,a为椭圆的长半轴,b为椭圆的短半轴。
4. 椭圆的周长 椭圆的周长没有简单的解析公式,但等于特定的正弦曲线在一个周期内的长度。 在实际应用中,通常使用数值方法或近似公式来计算椭圆的周长。
以上是对高二数学椭圆公式知识点的总结,涵盖了椭圆的定义、焦点与长短半轴关系、面积公式以及周长等相关内容。
高二数学椭圆公式知识点总结来啦,小伙伴们快来看一看吧!
椭圆定义:椭圆就像是平面内的一个“调皮”的动点P,它到两个定点F1、F2的距离之和总是等于一个常数,F1、F2就是椭圆的两个焦点啦!数学表达式就是:|PF1|+|PF2|=2a。
椭圆面积公式:椭圆的面积可是个“圆滚滚”的公式呢,就是π乘以长半轴a再乘以短半轴b,公式是:S=π×a×b。这样,你就能算出椭圆有多大啦!
焦点与长短半轴的关系:在椭圆里,焦点到椭圆中心的距离c、长半轴a和短半轴b之间可是有个“小秘密”的,它们满足关系:c²=a²-b²。这个公式可是连接椭圆形状和焦点的关键哦!
好啦,以上就是高二数学中关于椭圆的一些重要公式知识点啦,希望对你们有帮助哦!记得好好消化,让这些公式成为你解决数学问题的得力助手吧!
椭圆面积的计算公式为:S=π×a×b,其中a、b分别是椭圆的长半轴和短半轴的长度。这一公式属于几何数学领域,可以通过类比圆的面积公式推导得出。
椭圆是平面内的一个特殊轨迹,其上的动点P到两个定点F1、F2的距离之和等于一个常数。这两个定点F1、F2被称为椭圆的两个焦点。数学上,椭圆的定义可以表示为:|PF1|+|PF2|=2a。
椭圆是圆锥曲线的一种,即圆锥与平面相交得到的截线。椭圆的周长等于某个正弦曲线在一个周期内的长度,这一性质揭示了椭圆与其他数学对象的深刻联系。
通过对椭圆的研究,我们可以更深入地理解平面几何和圆锥曲线的性质。椭圆的应用范围广泛,不仅在几何学中占据重要地位,还在物理、工程等领域有着广泛的应用。
以上就是高二数学公式总结的全部内容,高二数学椭圆公式知识点总结如下:1. 椭圆定义公式 椭圆是平面内到两个定点F1、F2的距离之和等于常数的动点P的轨迹。 数学表达式为:|PF1|+|PF2|=2a。2. 椭圆焦点与长短半轴关系 椭圆有两个焦点F1、F2,以及长半轴a和短半轴b。 焦点到椭圆中心的距离c满足:c2=a2b2。内容来源于互联网,信息真伪需自行辨别。如有侵权请联系删除。