2014年高考数学试卷及答案?2014•福建)复数z=(3-2i)i的共轭复数 .z 等于()A.-2-3iB.-2+3iC.2-3iD.2+3i 考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:直接由复数代数形式的乘法运算化简z,则其共轭可求.解解:∵z=(3-2i)i=2+3i,那么,2014年高考数学试卷及答案?一起来了解一下吧。
ACADC BDBCB 我是老师,自己做的答案哈,这是理科的答案
填空题11.-2i 12.113.6014.515.1.3.4
分析:
(1)利用T1(P)=a1+b1,Tk(P)=bk+max{Tk﹣1(P),a1+a2+…+ak}(2≤k≤n),可求T1(P),T2(P)的值;
(2)T2(P)=max{a+b+d,a+c+d},T2(P′)=max{c+d+b,c+a+b},分类讨论,利用新定义,可比较T2(P)和T2(P′)的大小;
(3)根据新定义,可得结论.
解答:
解:
(1)T1(P)=2+5=7,T2(P)=1+max{T1(P),2+4}=1+max{7,6}=8;
(2)T2(P)=max{a+b+d,a+c+d},T2(P′)=max{c+d+b,c+a+b}.
当m=a时,T2(P′)=max{c+d+b,c+a+b}=c+d+b,
∵a+b+d≤c+d+b,且a+c+d≤c+b+d,∴T2(P)≤T2(P′);
当m=d时,T2(P′)=max{c+d+b,c+a+b}=c+a+b,
∵a+b+d≤c+a+b,且a+c+d≤c+a+d,∴T2(P)≤T2(P′);
∴无论m=a和m=d,T2(P)≤T2(P′);
(3)数对(4,6),(11,11),(16,11),(11,8),(5,2),T5(P)最小; T1(P)=10,T2(P)=26;T3(P)42,T4(P)=50,T5(P)=52.
这个题考查导数的几何意义,利用导数求函数的最值,证明不等式等,考查转化思想,考查学生分析解决问题的能力.题目还是有点难度的,下面是答案,你认真琢磨消化一下,不懂得可以继续问我哦。
这里就是答案哦http://gz.qiujieda.com/exercise/math/804035函数f(x)=ae^xlnx+(bex−1)/x,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x-1)+2.
(Ⅰ)求a、b;
(Ⅱ)证明:f(x)>1.加油~ 有帮助的话,不要忘记采纳哦!
这个题综合考查了指数函数的运算性质,导数的几何意义,等差数列与等比数列的通项公式及其前n项和公式等基础知识与基本技能方法,考查了推理能力,计算能力,"错位相减法",难度还是挺大的。不过答案在下面,仔细看下答案及解题思路,相信你就明白了~
这里就是答案http://gz.qiujieda.com/exercise/math/804188等差数列{an}的公差为d,点(an,bn)在函数f(x)=2^x的图象上(n∈N*).
(1)若a1=-2,点(a8,4b7)在函数f(x)的图象上,求数列{an}的前n项和Sn;
(2)若a1=1,函数f(x)的图象在点(a2,b2)处的切线在x轴上的截距为2-1/ln2,求数列{an/bn }的前n项和Tn
2014年普通高等学校招生全国统一考试(江西卷)
数学(理科)
一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 是的共轭复数. 若,((为虚数单位),则( )
A. B. C. D.
2. 函数的定义域为( )
A.B.C.D.
3. 已知函数,,若,则( )
A. 1B. 2C. 3D. -1
4.在中,内角A,B,C所对应的边分别为,若则的面积()
A.3 B.C.D.
5.一几何体的直观图如右图,下列给出的四个俯视图中正确的是()
6.某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,泽宇性别有关联的可能性最大的变量是()
A.成绩 B.视力C.智商 D.阅读量
7.阅读如下程序框图,运行相应的程序,则程序运行后输出的结果为()
A.7 B.9 C.10 D.11
8.若则()
A.B. C.D.1
9.在平面直角坐标系中,分别是轴和轴上的动点,若以为直径的圆与直线相切,则圆面积的最小值为()
A. B.C. D.
10.如右图,在长方体中,=11,=7,=12,一质点从顶点A射向点,遇长方体的面反射(反射服从光的反射原理),将次到第次反射点之间的线段记为,,将线段竖直放置在同一水平线上,则大致的图形是( )
二.选做题:请考生在下列两题中任选一题作答,若两题都做,则按所做的第一题评阅计分,本题共5分.在每小题给出的四个选项中,只有一项是符合题目要求的.
11(1).(不等式选做题)对任意,的最小值为( )
A. B. C. D.
11(2).(坐标系与参数方程选做题)若以直角坐标系的原点为极点,轴的非负半轴为极轴建立极坐标系,则线段的极坐标为( )
A. B. C.D.
三.填空题:本大题共4小题,每小题5分,共20分.
12.10件产品中有7件正品,3件次品,从中任取4件,则恰好取到1件次品的概率是________.
13.若曲线上点处的切线平行于直线,则点的坐标是________.
14.已知单位向量与的夹角为,且,向量与的夹角为,则=
15.过点作斜率为的直线与椭圆:相交于,若是线段的中点,则椭圆的离心率为
三.简答题
16.已知函数,其中
(1)当时,求在区间上的最大值与最小值;
(2)若,求的值.
17、(本小题满分12分)
已知首项都是1的两个数列(),满足.
(1)令,求数列的通项公式;
(2)若,求数列的前n项和.
18、(本小题满分12分)
已知函数.
(1)当时,求的极值;
(2)若在区间上单调递增,求b的取值范围.
19(本小题满分12分)
如图,四棱锥中,为矩形,平面平面.
(1)求证:
(2)若问为何值时,四棱锥的体积最大?并求此时平面与平面夹角的余弦值.
20.(本小题满分13分)
如图,已知双曲线的右焦点,点分别在的两条渐近线上,轴,∥(为坐标原点).
(1)求双曲线的方程;
(2)过上一点的直线与直线相交于点,与直线相交于点,证明点在上移动时,恒为定值,并求此定值
21.(满分14分)随机将这2n个连续正整数分成A,B两组,每组n个数,A组最小数为,最大数为;B组最小数为,最大数为,记
(1)当时,求的分布列和数学期望;
(2)令C表示事件与的取值恰好相等,求事件C发生的概率;
(3)对(2)中的事件C,表示C的对立事件,判断和的大小关系,并说明理由。
以上就是2014年高考数学试卷及答案的全部内容,2014年普通高等学校招生全国统一考试(江西卷)数学(理科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。1. 是的共轭复数. 若,((为虚数单位)。