当a=bsinA或a>b时,B有一解
注:当A为钝角或是直角时以此类推既可。
3、三角形面积公式:.
4、余弦定理:在中,有,,
.
5、余弦定理的推论:,,.
(余弦定理主要解决的问题:1、已知两边和夹角,求其余的量。2、已知三边求角)
6、如何判断三角形的形状:设、、是的角、、的对边,则:①若,则;
②若,则;③若,则.
正余弦定理的综合应用:如图所示:隔河看两目标A、B,
但不能到达,在岸边选取相距千米的C、D两点,
并测得∠ACB=75O,∠BCD=45O,∠ADC=30O,
∠ADB=45O(A、B、C、D在同一平面内),求两目标A、B之间的距离。
高一数学必修1知识点归纳
高中数学:必修一、二、三、四、五,选修一、二、三、四,知识点全归纳如下所示:
一、80分及以下的考生:
做多少题目并不是最重要的,对于这部分考生而言,把基本的知识体系梳理好,考试必考题目的题型方法整理好这才是最重要的,学习要点:基础知识+基础题型+变式题型。
1、要学会做减法,你不要贪多,什么都想学,一张卷子哪个题的分数都想得,这是不正确的,一定要循序渐进,先解决力所能及的必考点。
2、要从基本概念入手,别一开始就做综合题或者难题,先把经典的题型搞清楚,然后再做一些中档题,深化一点点就可以了,先不碰难题。
3、很多学生的问题就在于基本的公式、方法记不住(跟没学过一样,毫无印象)、记不清(模棱两可,似是而非)、记不牢(当天记住了,第二天又忘了),所以,对于之前掌握了的知识,要定期的、频繁的重复,一遍一遍的加深印象。
二、80—90分奔120分的考生:
这类考生一般缺乏的是知识框架、条理、以及难题的思考和分析方法。
来给大家梳理一下高中的所有知识点,希望大家能够巩固基础,从而提分。
高中数学必修+选修知识点归纳:
课程内容:必修课程由5个模块组成︰
必修1∶集合、函数概念与基本初等函数(指、对、幂函数)。

初中数学知识点总结
我们在学习当中认真预习好新的课程,上课专心听讲;不懂的及时请教老师或者同学。放学回来要认真把老师布置的作业完成,并且把课堂上学过的知识好好温习一遍;这样才能把学过的内容牢牢地记在脑子里。以下是我给大家整理的高二数学必修五知识点总结,希望能帮助到你!
高二数学必修五知识点总结1
1.等差数列通项公式
an=a1+(n-1)d
n=1时a1=S1
n≥2时an=Sn-Sn-1
an=kn+b(k,b为常数)推导过程:an=dn+a1-d令d=k,a1-d=b则得到an=kn+b
2.等差中项
由三个数a,A,b组成的等差数列可以堪称最简单的等差数列。这时,A叫做a与b的等差中项(arithmeticmean)。
有关系:A=(a+b)÷2
3.前n项和
倒序相加法推导前n项和公式:
Sn=a1+a2+a3+·····+an
=a1+(a1+d)+(a1+2d)+······+[a1+(n-1)d]①
Sn=an+an-1+an-2+······+a1
=an+(an-d)+(an-2d)+······+[an-(n-1)d]②
由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n个)=n(a1+an)
∴Sn=n(a1+an)÷2
等差数列的前n项和等于首末两项的和与项数乘积的一半:
Sn=n(a1+an)÷2=na1+n(n-1)d÷2
Sn=dn2÷2+n(a1-d÷2)
亦可得
a1=2sn÷n-an=[sn-n(n-1)d÷2]÷n
an=2sn÷n-a1
有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+1
4.等差数列性质
一、任意两项am,an的关系为:
an=am+(n-m)d
它可以看作等差数列广义的通项公式。

高中物理必修一知识点总结
高中数学必修5本分别讲的内容如下:
必修1: 函数:主要包括函数的定义、性质、图像以及基本的初等函数的学习。 集合与逻辑:涉及集合的基本概念、运算以及逻辑用语和命题等。
必修2: 立体几何:主要学习空间几何体的结构特征、三视图、直观图以及空间几何体的表面积和体积的计算。 解析几何:学习平面直角坐标系、直线与方程、圆与方程以及空间直角坐标系等基础知识。
必修3: 算法初步:介绍算法的基本概念、流程图以及基本算法语句等。 统计:学习数据的收集、整理、描述和分析等统计方法。 概率:涉及随机事件、概率的定义、性质以及古典概型和几何概型等。
必修4: 三角函数:包括三角函数的定义、性质、图像以及诱导公式、和差化积、积化和差等公式的应用。
必修五数学知识点总结
人是在失败中长大,每一个名人背后都有不为人知的故事寒窗苦的读圣贤书,既然我们没在哪社会而感到高兴,既然古人为我们创造知识何必不去珍惜古人的汗水。下面是我给大家带来的高二数学必修五教学知识点,希望能帮助到你!
高二数学必修五教学知识点1
函数的单调性、奇偶性、周期性
单调性:定义:注意定义是相对与某个具体的区间而言。
判定方法有:定义法(作差比较和作商比较)
导数法(适用于多项式函数)
复合函数法和图像法。
应用:比较大小,证明不等式,解不等式。
奇偶性:
定义:注意区间是否关于原点对称,比较f(_)与f(-_)的关系。f(_)-f(-_)=0f(_)=f(-_)f(_)为偶函数;
f(_)+f(-_)=0f(_)=-f(-_)f(_)为奇函数。
判别方法:定义法,图像法,复合函数法
应用:把函数值进行转化求解。
周期性:定义:若函数f(_)对定义域内的任意_满足:f(_+T)=f(_),则T为函数f(_)的周期。
其他:若函数f(_)对定义域内的任意_满足:f(_+a)=f(_-a),则2a为函数f(_)的周期.
应用:求函数值和某个区间上的函数解析式。
四、图形变换:函数图像变换:(重点)要求掌握常见基本函数的图像,掌握函数图像变换的一般规律。
以上就是高中数学必修5知识点总结的全部内容,高中数学必修5本分别讲的内容如下:必修1: 函数:主要包括函数的定义、性质、图像以及基本的初等函数的学习。 集合与逻辑:涉及集合的基本概念、运算以及逻辑用语和命题等。必修2: 立体几何:主要学习空间几何体的结构特征、三视图、直观图以及空间几何体的表面积和体积的计算。内容来源于互联网,信息真伪需自行辨别。如有侵权请联系删除。