高一高二数学公式?此外,还有1+sin(a)和1-sin(a)的平方形式,以及csc(a)和sec(a)的定义;推导公式如tanα+cotα、1+cos2α、1-cos2α、1+sinα等,这些公式在解题中非常有用。那么,高一高二数学公式?一起来了解一下吧。
高二数学公式包括但不限于以下内容:
一、三角函数公式正弦余弦公式及其变式: $sin = sin a cos b + cos a sin b$ $cos = cos a cos bsin a sin b$ 及其差角、倍角、半角等变式公式
正余弦定理:
正弦定理:$frac{a}{sin A} = frac{b}{sin B} = frac{c}{sin C} = 2R$
余弦定理:$a^2 = b^2 + c^22bc cos A$
二、三角面积公式: $S = frac{1}{2}absin C$
三、数列公式等差数列: 通项公式:$a_n = a_1 + d$ 前n项和公式:$S_n = frac{n}{2}$ 或 $S_n = na_1 + frac{n}{2}d$
等比数列:
通项公式:$a_n = a_1q^{n1}$
前n项和公式:$S_n = frac{a_1}{1q}$
四、圆锥曲线公式圆: 标准方程:$^2 + ^2 = r^2$ 一般方程:$x^2 + y^2 + dx + ey + f = 0$ 面积:$S = pi r^2$ 周长:$C = 2pi r$
椭圆:
标准方程:$frac{x^2}{a^2} + frac{y^2}{b^2} = 1$
面积公式:$S = pi ab$
周长公式:$l = 2b + 4$
抛物线:
标准方程:$y^2 = 2px$
顶点式:$y = a^2 + k$
焦点与准线方程:焦点$$,准线$x = p/2$
五、导数公式: 基本导数公式 导数的运算法则
六、命题逻辑: 四种命题的真假性关系
以上公式是高二数学中常用的基本公式,掌握这些公式对于解决相关数学问题至关重要。
高二数学公式有正弦余弦公式及其变式和推论、三角面积公式、等差等比数列的通项公式、等差等比数列的前n项和公式、圆锥曲线的表达式、导数公式、四种命题的真假性关系等。
高中数学公式总结:
圆的公式
1、圆体积=4/3(pi)(r^3)
2、面积=(pi)(r^2)
3、周长=2(pi)r
4、圆的标准方程(x-a)2+(y-b)2=r2【(a,b)是圆心坐标】
5、圆的一般方程x2+y2+dx+ey+f=0【d2+e2-4f0】
椭圆公式
1、椭圆周长公式:l=2b+4(a-b)
2、椭圆周长定理:椭圆的周长等于该椭圆短半轴,长为半径的圆周长(2b)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差.
3、椭圆面积公式:s=ab
4、椭圆面积定理:椭圆的面积等于圆周率()乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
以上椭圆周长、面积公式中虽然没有出现椭圆周率t,但这两个公式都是通过椭圆周率t推导演变而来。
两角和公式
1、sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosa
2、cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinb
3、tan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb)
4、ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)
倍角公式
1、tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctga
2、cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
1、sin(a/2)=((1-cosa)/2)sin(a/2)=-((1-cosa)/2)
2、cos(a/2)=((1+cosa)/2)cos(a/2)=-((1+cosa)/2)
3、tan(a/2)=((1-cosa)/((1+cosa))tan(a/2)=-((1-cosa)/((1+cosa))
4、ctg(a/2)=((1+cosa)/((1-cosa))ctg(a/2)=-((1+cosa)/((1-cosa))
和差化积
1、2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b)
2、2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)
3、sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b)/2)
4、tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosb
5、ctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb
等差数列
1、等差数列的通项公式为:an=a1+(n-1)d(1)
2、前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)
从(1)式可以看出,an是n的一次数函(d0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d0)或一次函数(d=0,a10),且常数项为0。
平方关系:
sin^2α+cos^2α=1
1+tan^2α=sec^2α
1+cot^2α=csc^2α
·积的关系:
sinα=tanα×cosα
cosα=cotα×sinα
tanα=sinα×secα
cotα=cosα×cscα
secα=tanα×cscα
cscα=secα×cotα
·倒数关系:
tanα ·cotα=1
sinα ·cscα=1
cosα ·secα=1
商的关系:
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
直角三角形ABC中,
角A的正弦值就等于角A的对边比斜边,
余弦等于角A的邻边比斜边
正切等于对边比邻边,
·[1]三角函数恒等变形公式
·两角和与差的三角函数:
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
·三角和的三角函数:
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
·辅助角公式:
Asinα+Bcosα=(A�0�5+B�0�5)^(1/2)sin(α+t),其中
sint=B/(A�0�5+B�0�5)^(1/2)
cost=A/(A�0�5+B�0�5)^(1/2)
tant=B/A
Asinα-Bcosα=(A�0�5+B�0�5)^(1/2)cos(α-t),tant=A/B
·倍角公式:
sin(2α)=2sinα·cosα=2/(tanα+cotα)
cos(2α)=cos�0�5(α)-sin�0�5(α)=2cos�0�5(α)-1=1-2sin�0�5(α)
tan(2α)=2tanα/[1-tan�0�5(α)]
·三倍角公式:
sin(3α)=3sinα-4sin�0�6(α)=4sinα·sin(60+α)sin(60-α)
cos(3α)=4cos�0�6(α)-3cosα=4cosα·cos(60+α)cos(60-α)
tan(3α)=tan a · tan(π/3+a)· tan(π/3-a)
·半角公式:
sin(α/2)=±√((1-cosα)/2)
cos(α/2)=±√((1+cosα)/2)
tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
·降幂公式
sin�0�5(α)=(1-cos(2α))/2=versin(2α)/2
cos�0�5(α)=(1+cos(2α))/2=covers(2α)/2
tan�0�5(α)=(1-cos(2α))/(1+cos(2α))
·万能公式:
sinα=2tan(α/2)/[1+tan�0�5(α/2)]
cosα=[1-tan�0�5(α/2)]/[1+tan�0�5(α/2)]
tanα=2tan(α/2)/[1-tan�0�5(α/2)]
·积化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
·和差化积公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
·推导公式
tanα+cotα=2/sin2α
tanα-cotα=-2cot2α
1+cos2α=2cos�0�5α
1-cos2α=2sin�0�5α
1+sinα=(sinα/2+cosα/2)�0�5
·其他:
sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0
cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及
sin�0�5(α)+sin�0�5(α-2π/3)+sin�0�5(α+2π/3)=3/2
tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
cosx+cos2x+...+cosnx= [sin(n+1)x+sinnx-sinx]/2sinx
证明:
左边=2sinx(cosx+cos2x+...+cosnx)/2sinx
=[sin2x-0+sin3x-sinx+sin4x-sin2x+...+ sinnx-sin(n-2)x+sin(n+1)x-sin(n-1)x]/2sinx (积化和差)
=[sin(n+1)x+sinnx-sinx]/2sinx=右边
等式得证
sinx+sin2x+...+sinnx= - [cos(n+1)x+cosnx-cosx-1]/2sinx
证明:
左边=-2sinx[sinx+sin2x+...+sinnx]/(-2sinx)
=[cos2x-cos0+cos3x-cosx+...+cosnx-cos(n-2)x+cos(n+1)x-cos(n-1)x]/(-2sinx)
=- [cos(n+1)x+cosnx-cosx-1]/2sinx=右边
等式得证
[编辑本段]三角函数的诱导公式
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α与 -α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:
利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:
π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上k∈Z)
对于任意非直角三角形中,如三角形ABC,总有tanA+tanB+tanC=tanAtanBtanC
证明:
已知(A+B)=(π-C)
所以tan(A+B)=tan(π-C)
则(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)
整理可得
tanA+tanB+tanC=tanAtanBtanC
类似地,我们同样也可以求证:当α+β+γ=nπ(n∈Z)时,总有tanα+tanβ+tanγ=tanαtanβtanγ
设a=(x,y),b=(x',y')。
24个基本积分公式:
1、∫kdx=kx+C(k是常数)。
2、∫x^udx=(x^u+1)/(u+1)+c。
3、∫1/xdx=ln|x|+c。
4、∫dx=arctanx+C21+x1。
5、∫dx=arcsinx+C21x。
(配图1)
24个基本积分公式还有如下:
6、∫cosxdx=sinx+C。
7、∫sinxdx=cosx+C。
8、∫sec∫csc2xdx=tanx+Cxdx=cotx+C2。
9、∫secxtanxdx=secx+C。
10、∫cscxcotxdx=cscx+C。
11、∫axdx=+Clna。
12、[∫f(x)dx]'=f(x)。
13、∫f'(x)dx=f(x)+c。
14、∫d(f(x))=f(x)+c。
15、∫1/(a^2-x^2)dx=(1/2a)ln|(a+x)/(a-x)|+c。
16、∫secxdx=ln|secx+tanx|+c。
17、∫1/(a^2+x^2)dx=1/a*arctan(x/a)+c。
18、∫1/√(a^2-x^2)dx=arcsin(x/a)+c。
19、∫sec^2xdx=tanx+c。
20、∫shxdx=chx+c。
1.诱导公式
sin(-a)=-sin(a)
cos(-a)=cos(a)
sin(π/2-a)=cos(a)
cos(π/2-a)=sin(a)
sin(π/2+a)=cos(a)
cos(π/2+a)=-sin(a)
sin(π-a)=sin(a)
cos(π-a)=-cos(a)
sin(π+a)=-sin(a)
cos(π+a)=-cos(a)
2.两角和与差的三角函数
sin(a+b)=sin(a)cos(b)+cos(a)sin(b)
cos(a+b)=cos(a)cos(b)-sin(a)sin(b)
sin(a-b)=sin(a)cos(b)-cos(a)sin(b)
cos(a-b)=cos(a)cos(b)+sin(a)sin(b)
tan(a+b)=tan(a)+tan(b)/(1-tan(a)tan(b))
tan(a-b)=tan(a)-tan(b)/(1+tan(a)tan(b))
3.和差化积公式
sin(a)+sin(b)=2sin((a+b)/2)cos((a-b)/2)
sin(a)-sin(b)=2cos((a+b)/2)sin((a-b)/2)
cos(a)+cos(b)=2cos((a+b)/2)cos((a-b)/2)
cos(a)-cos(b)=-2sin((a+b)/2)sin((a-b)/2)
4.2倍角公式
sin(2a)=2sin(a)cos(a)
cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a)
5.半角公式
sin2(a/2)=(1-cos(a))/2
cos2(a/2)=(1+cos(a))/2
tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))
6.万能公式
sin(a)=2tan(a/2)/(1+tan2(a/2))
cos(a)=(1-tan2(a/2))/(1+tan2(a/2))
tan(a)=2tan(a/2)/(1-tan2(a/2))
7.其它公式
a⋅sin(a)+b⋅cos(a)=√(a2+b2)sin(a+c) 其中 tan(c)=b/a
a⋅sin(a)+b⋅cos(a)=√(a2+b2)cos(a-c) 其中 tan(c)=a/b
1+sin(a)=(sin(a/2)+cos(a/2))2
1-sin(a)=(sin(a/2)-cos(a/2))2
乘法与因式分解 a2-b2=(a+b)(a-b)
a3+b3=(a+b)(a2-ab+b2)
a3-b3=(a-b)(a2+ab+b2)
三角不等式
|a+b|≤|a|+|b|
|a-b|≤|a|+|b|
|a|≤b <=> -b≤a≤b
|a-b|≥|a|-|b|
-|a|≤a≤|a|
一元二次方程的解
-b±√(b2-4ac)/2a
根与系数的关系
X1+X2= -b/a
X1⋅X2=c/a 注:韦达定理
判别式
b2-4ac=0 注:方程有相等的两实根
b2-4ac>0 注:方程有一个实根
b2-4ac<0 注:方程有共轭复数根
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2
1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1)
12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4
1⋅2+2⋅3+3⋅4+4⋅5+5⋅6+6⋅7+…+n(n+1)=n(n+1)(n+2)/3
圆的标准方程
(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
圆的一般方程
x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
抛物线标准方程
y2=2px
y2=-2px
x2=2py
x2=-2py
直棱柱侧面积
S=c⋅h
斜棱柱侧面积
S=c'⋅h
正棱锥侧面积
S=1/2c⋅h'
正棱台侧面积
S=1/2(c+c')h'
圆台侧面积
S=1/2(c+c')l=π(R+r)l
球的表面积
S=4πr2
圆柱侧面积
S=c⋅h=2πh
圆锥侧面积
S=1/2c⋅l=πr⋅l
弧长公式
L=a⋅r a是圆心角的弧度数r >0
扇形面积公式
S=1/2L⋅r
锥体体积公式
V=1/3S⋅H
圆锥体体积公式
V=1/3πr2h
斜棱柱体积
V=S'L 注:其中,S'是直截面面积, L是侧棱长
柱体体积公式
V=s⋅h
圆柱体
V=πr2h
以上就是高一高二数学公式的全部内容,高二数学公式包括但不限于以下内容:一、三角函数公式 正弦余弦公式及其变式: $sin = sin a cos b + cos a sin b$ $cos = cos a cos b sin a sin b$ 及其差角、倍角、内容来源于互联网,信息真伪需自行辨别。如有侵权请联系删除。