当前位置: 高中学习网 > 高中 > 高中数学

高中数学椭圆题目,椭圆题型20题并附答案

  • 高中数学
  • 2025-04-22

高中数学椭圆题目?解:如图,设|F1B|=k(k>0),则|AF1|=3|F1B|=3k∴|AB|=4k,根据椭圆性质,得:|AF2|=2a−3k,|BF2|=2a−k∵cos∠AF2B=3/5,那么,高中数学椭圆题目?一起来了解一下吧。

有关椭圆的题

(1)A、B,F1、F2,椭圆,都是关于O对称的,因此|AF1|=|BF2|,

|AF1|+|BF1|=|BF2|+|BF1|=4=2a(椭圆定义),a=2;

向量F1C=(c,b);向量CD=(a,-b)

向量F1C.向量CD=ac-b²=2√(a²-b²)-b²=2√(4-b²)-b²=2√3-1

2√(4-b²)=b²+2√3-1

平方:

4(4-b²)=b^4+2(2√3-1)b²+(13-4√3)

b^4+(4√3+2)b²-(3+4√3)=0

(b²-1)(b²+3+4√3)=0

b²=1

b=1

方程x²/4+y²=1

(2)过P、Q向x轴作垂线,△OPQ的面积=0.5(|OM||yp|+|OM||yq|)

=0.5(|yp|+|yq|)

yp,yq异号,因此

△OPQ的面积=0.5|yp-yq|

只要求出|yp-yq|的极大值即可

△OPQ的面积=0.5√(yp-yq)²=0.5√[(yp+yq)²-4ypyq],可以用韦达定理求解。

设过M的直线斜率是k,方程y=k(x-1)

x=y/k+1,

代入椭圆方程:

(y/k+1)²/4+y²=1

y²/k²+2y/k+1+4y²=4

(4+1/k²)y²+(2/k)y-3=0

yp+yq=-(2/k)/(4+1/k²)=-2k/(4k²+1)

ypyq=-3/(4+1/k²)=-3k²/(4k²+1)

设:

S=△OPQ的面积=0.5√[(yp+yq)²-4ypyq]

=0.5√[(2k/(4k²+1))²+4×3k²/(4k²+1)]

=0.5√[4k²/(4k²+1)²+12k²/(4k²+1)]

=|k|√[1/(4k²+1)²+3/(4k²+1)]

=(|k|/(4k²+1))√[1+3(4k²+1)]

=(|k|/(4k²+1))√[12k²+4]

=2|k|√(3k²+1)/(4k²+1)

根据对称性,只要考虑k>0即可,k=0,面积为0,不考虑。

椭圆在高考会出什么题

解:

如图,设|F1B|=k(k>0),则|AF1|=3|F1B|=3k

∴|AB|=4k,根据椭圆性质,得:

|AF2|=2a−3k,|BF2|=2a−k

∵cos∠AF2B=3/5,

在△ABF2中,由余弦定理得,

|AB|²=|AF2|²+|BF2|²−2|AF2|⋅|BF2|cos∠AF2B

即(4k)²=(2a−3k)²+(2a−k)²−6/5(2a−3k)(2a−k),

化简可得(a+k)(a−3k)=0,而a+k>0,故a=3k,

∴|AF2|=|AF1|=a=3k,|BF2|=5k,

∴|BF2|²=|AF2|²+|AB|²,

∴AF1⊥AF2,

∴△AF1F2是等腰直角三角形

∴|AF2|²+|AF1|²=|F1F2|²,即a²+a²=(2c)²

∴c=√2/2a,

∴椭圆的离心率e=c/a=√2/2

椭圆经典题目100道

⑴设椭圆的方程为x^2/a^2+y^2/b^2=1

(a>b>0)

设C(acosθ,bsinθ),则OC中点M为(0.5acosθ,0.5bsinθ)

设A、B坐标分别为(x1,y1)、(x2,y2),直线AB斜率为k代入到椭圆方程中,得:

x1^2/a^2+y1^2/b^2=1

x2^2/a^2+y2^2/b^2=1

两式相减,得:k=(y1-y2)/(x1-x2)=-(b/a)^2×(x1+x2)/(y1+y2)=1

又M也是AB中点,所以

(x1+x2)/(y1+y2)=0.5acosθ/0.5bsinθ

即bsinθ/acosθ=-(b/a)^2

化简得:

bcosθ+asinθ=0

……①

同时MF的斜率为1,所以0.5bsinθ/(0.5acosθ-c)=1

化简得:

acosθ-bsinθ=2c

……②

①②式平方相加,得:a^2+b^2=4c^2

,

又a^2-c^2=b^2

∴e=c/a=√10/5

⑵S△OAC=1/2S平行四边形OACB=S△OAB=15√5

利用椭圆焦点弦长公式AB=2ab^2/(a^2-c^2cos^α)

α是直线AB的倾斜角

这里,cos^α=1/2

,

所以AB=4ab^2/(2a^2-c^2)

又O到直线AB的距离d=c/√2

且S△OAB=15√5=1/2AB×d

将以上各式代入,化简得:a^2=100,

b^2=60

∴椭圆的方程为x^2/100+y^2/60=1

顺便给你证明一边椭圆的焦点弦长公式吧:

设椭圆的方程为x^2/a^2+y^2/b^2=1

(a>b>0)

过焦点F1的直线AB交椭圆于AB两点,倾斜角为α。

高中数学椭圆大题及答案

设A坐标是(x1,y1),B(x2,y2),则有x1+x2=2*1/2=1,y1+y2=1

x1^2/2+y1^2=1

x2^2/2+y2^2=1

二式相减得到(x1-x2)*(x1+x2)+2(y1-y2)(y1+y2)=0

即有AB的斜率k=(y1-y2)/(x1-x2)=-(x1+x2)/(2(y1+y2))=-1/2

那么AB的方程是y-1/2=-1/2(x-1/2)

即有y=-x/2+3/4

直线方程代入到椭圆方程中有x^2+2(-x/2+3/4)^2=2

x^2+x^2/2-3/2x+9/8-2=0

3x^2-3x-7/4=0

x1+x2=1,x1x2=-7/12

(x1-x2)^2=(x1+x2)^2-4x1x2=1+7/3=10/3

故有AB=根号(1+k^2)*|x1-x2|=根号(1+1/4)*根号(10/3)=根号(25/6)=5根号6/6

椭圆方程典型例题

这题简单了,首先A、B的坐标为(a,0),(0,b)

则AB的斜率为-b/a, 又有PF1垂直于x轴,所以P点的横坐标与F相同,即均为-c, 故设P点的坐标为(-c,k),代入椭圆方程,有c^2/a^2+k^2/b^2=1

AB平行于OP,所以OP的斜率也为-b/a.即有

k/(-c)=-b/a k=bc/a 将k代入椭圆方程

有c^2/a^2+(bc/a)^2/b^2=1

所以2c^2/a^2=1

又有e=c/a

则2e^2=1

e=(根号2)/2

以上就是高中数学椭圆题目的全部内容,设Q(x,y),直线方程为y=kx+m 代入椭圆方程x^2/a^2+y^2/b^2=1得 x^2/a^2+(kx+m)^2/b^2=1 整理得 (b^2+a^2k^2)x^2+2a^2kmx+a^2m^2-a^2b^2=0 注意直线是切线,内容来源于互联网,信息真伪需自行辨别。如有侵权请联系删除。

猜你喜欢