2018文科数学全国一卷?2018年高考全国一卷文科数学整体难度偏低,算法未考且线性规划简单,部分题型难度下降,解答题难度分布不均,数列连续三年成为重点考查内容。具体分析如下:算法未考与新课程标准关联2018年试卷未出现算法题,这与新出台的课程标准中删除算法和线性规划内容直接相关。由于课程标准调整具有导向性,部分教师已预判到算法可能被弱化,那么,2018文科数学全国一卷?一起来了解一下吧。
2018年全国统一高考湖北省是使用全国卷的,不区分AB卷,2018年湖北髙考使用全国Ⅰ卷,新课标一卷,也就是全国乙卷。
通常情况下,全国Ⅰ卷会比全国Ⅱ卷稍难一些,但考全国卷的省份都会根据考试大纲命题,不会因地区或教材等因素而区别对待考生高考试卷一般会密封存档,高考结束后不允许带出考场,考生们答题时一定要确保把答题卡填涂完整,千万不要答窜题,试卷和草稿纸可以随意写写画画。
扩展资料:
新老高考改革前后四大变化:
一、科目变化
改革前:采用文理分科模式,考试科目有语文、数学、外语、+理综或文综任选一门;
改革后:采用“3+3”模式,即:语文、数学、外语为必考科目,再从六门选考科目物理、化学、历史、地理、生物、政治六科选三门进行考试。
影响:
文理分科后,理科生只学理化生,题海战术,进行逻辑思维训练,忽略了日常情操和对于文史知识、文化底蕴。
而文科生平常注重史政文化知识的积累,缺少思维能力的训练。
文理不分科,便于培养学生综合文化素质,在大学能够继续发挥综合优势,也为学生以后的就业人生提供了更多的方向。
二、学科考试
改革前:九科集中在一次性考试,考试作为高招毕业和少数高考专业录取的参考;
改革后:分为合格性考试和选考科目,合格性考试在高二、高三期末各组织一次,可以补考,为高中毕业的依据;选考科目考试时间为高考结束之后,选三科考试,计入高考总成绩。
2018年辽宁高考数学试卷试题及答案解析(答案WORD版)
2015年辽宁数学文科试卷首次采用全国卷(新课标2),与相比,数学试卷难度有所降低,大部分考生答起来都比较顺手,可谓给高考学子们的“征战之路”打了一剂强心针。
以往辽宁的数学自主命题卷,都是在选择最后一题与填空的最后一题设置难点,即12题与16题,对学生考试的心理心态、解题技巧、知识掌握程度都是不小的挑战。“全国卷”的命题风格则比较“平稳”,没有偏题怪题,难度系数相对较低,特别是与往年的全国卷相比,2015年的文科理科数学试卷都更加简单,很可能会出现140多分的试卷或者满分试卷,2015年的`平均分也会比有所提高。
本溪市第一中学的数学老师介绍,2015年高考数学卷,比较适合基础扎实的中等学生答卷。同时,尖子生也能发挥出应有的水平。但是拿到真正的高分也并非易事,因为2015年的试题在命题形式上更加新颖灵活,有一定创新。
理科数学试卷中,解析题第17题是数形结合题,第18题是茎叶图,和往常略有变化。19题立体几何中的第一问也出现了较为冷门的作图题。平时考查立体几何的首问时,以证明平行、垂直或是求体积居多,作图题平时训练相对少,有些考生因为陌生而感到不适应。
不知不觉已到了期末,文科的各位同学数学复习的怎么样,做套题试试吧。下面由我给你带来关于2018年高二文科数学期末试卷及答案,希望对你有帮助!
2018年高二文科数学期末试卷
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.已知集合A={x|x2+x-2=0},B={x|ax=1},若A∩B=B,则a= ()
A.-12或1 B.2或-1 C.-2或1或0 D.-12或1或0
2.设有函数组:① , ;② , ;③ , ;④ , .其中表示同一个函数的有( ).
A.①② B.②④ C.①③ D.③④
3.若 ,则f(-3)的值为()
A.2 B.8 C.18 D.12
4.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“同族函数”,则函数解析式为y=x2+1,值域为{1,3}的同族函数有()
A.1个 B.2个 C.3个 D.4个
5.下列函数中,在[1,+∞)上为增函数的是 ()
A.y=(x-2)2 B.y=|x-1| C.y=1x+1 D.y=-(x+1)2
6.函数f(x)=4x+12x的图象()
A.关于原点对称 B.关于直线y=x对称
C.关于x轴对称 D.关于y轴对称
7.如果幂函数y=xa的图象经过点2,22,则f(4)的值等于 ()
A.12 B.2 C.116 D. 16
8.设a=40.9,b=80.48,c=12-1.5,则 ()
A.c> a>b B. b>a>c C.a>b>c D.a>c>b
9 .设二次函数f(x)=a x2-2ax+c在区间[0,1]上单调递减,且f(m)≤f(0),则实数m的取值范围是 ()
A.(-∞,0] B.[2,+∞) C.[0,2] D.(-∞,0]∪[2,+∞)
10.已知f(x)在区间(0,+∞)上是减函数,那么f(a2-a+1)与f34的大小关系是 ()
A.f(a2-a+1)>f34 B.f(a2-a+1)≤f34
C.f(a2-a+1)≥f34 D.f(a2-a+1)11.已知幂函数f(x)=xα的部分对应值如下表:
x 1 12
f(x) 1 22
则不等式f(|x|)≤2的解集是 ()
A.{x|-4≤x≤4} B.{x|0≤x≤4} C.{x|-2≤x≤2} D.{x|012.若奇函数f(x)在(0,+∞)上是增函数,又f(-3)=0,则 的解集为()
A.(-3,0)∪(3,+∞) B.(-3,0)∪(0,3)
C.(-∞,-3)∪(3,+∞) D.(-∞,-3)∪(0,3)
第Ⅱ卷(共90分)
二、填空题:(本大题共4小题,每题5分,共20分,把最简答案填写在答题卡的横线上)
13. 已知函数 若关于x的方程f(x)=k有两个不 同的实根,则实数k的取值范围是________.
14.已知f2x+1=lg x,则f(21)=___________________.
15.函数 的增区间是____________.
16.设偶函数f(x)对任意x∈R,都有 ,且当x∈[-3,-2]时,f(x)=2x,则f(113.5)的值是____________.
三.解答题(本大题共6小题,共70分. 解答应写出必要的文字说明、证明过程或演算步骤).
17.(本题满分10分) 已知函数 ,且 .
(1)求实数c的值;
(2)解不等式 .
18.(本题满分12分) 设集合 , .
(1)若 ,求实数a的取值范围;
(2)若 ,求实数a的取值范围;
(3)若 ,求实数a的值.
19.(本题满分12分) 已知函数 .
(1)对任意 ,比较 与 的大小;
(2)若 时,有 ,求实数a的取值范围.
20.(本题满分12分) 已知定义在R上的奇函数f(x)有最小正周期2,且当x∈(0,1)时,f(x)=2x4x+1.
(1)求f(1)和f(-1)的值;
(2)求f(x)在[-1,1]上的解析式.
21.(本题满分12分) 已知函数f(x),当x,y∈R时,恒有f(x+y)=f(x)+f(y).
(1)求证:f(x)是奇函数;
(2)如果x为正实数,f(x)<0,并且f(1)=-12,试求f(x)在区间[-2,6]上的最值.
22.(本题满分12分) 已知函数f(x)=logax+bx-b(a>0,b>0,a≠1).
(1)求f(x)的定义域;
(2)讨论f(x)的奇偶性;
(3)讨论f(x)的单调性;
2018年高二文科数学期末试卷答案
2.D 在①中, 的定义域为 , 的定义域为 ,故不是同一函数;在②中, 的定义域为 , 的定义域为 ,故不是同一函数;③④是同一函数.
3. Cf(-3)=f(-1)=f(1)=f(3)=2-3=18.
4. C由x2+1=1得x=0,由x2+1=3得x=±2,∴函数的定义域可以是{0,2},{0,-2},{0,2,-2},共3个.
5. B作出A 、B、C、D中四个函数的图象进行判断.
6. Df(x)=2x+2-x,因为f(-x)=f(x),所以f(x)为偶函数.所以f(x)的图象关于y轴对称.
7. A∵幂函数y=xa的 图象经过点2,22,
∴22=2a,解得a=-12,∴y=x ,故f(4)=4-12=12.
8. D因为a=40.9=21.8,b=80.48=21.44 , c=12-1.5=21.5,所以由指数函数y=2x在(-∞,+∞)上 单调递增知a>c>b.
9. C二次函数f(x)=ax2-2ax+c在区间[0,1]上单调递减,则a≠0,f′(x)=2a(x- 1)<0,x∈[0,1],所以a>0,即函数图象的开口向上,对称轴是直线x=1.所以f(0) =f(2),则当f( m)≤f(0)时,有0≤m≤2.
10. B∵a2-a+1=a-122+34≥34,
又f(x)在(0,+∞)上为减函数,∴f(a2-a+1)≤f34.
11.A由题表知22=12α,∴α=12,∴f(x)=x .∴(|x|) ≤2,即|x|≤4,故-4≤x≤4.
12. B根据条件画草图 ,由图象可知 xfx<0⇔x>0,fx<0
或x<0,fx>0⇔-3
13. (0,1) 画出分段函数f(x)的图象如图所示,结合图象可以看出,若f(x)=k有两个不同的实根,即函数y=f(x)的图象与y=k有两个不同 的交点,k的取值范围为(0,1).
14.-1 令2x+1=t(t>1),则x=2t-1,
∴f(t)=lg2t-1,f(x)= lg2x-1(x>1),f(21)=-1.
15.-∞,12 ∵2x2-3x+1>0,∴x<12或x>1.
∵二次函数y=2x2-3x+1的减区间是-∞,34,∴f(x)的增区间是-∞,12.
16.15. ∵f(-x)=f(x),f(x+6)=f(x+3+3)=-1fx+3=f(x),∴f(x)的周期为6.∴f(113.5)=f(19×6-0.5)=f(-0.5)=f(0.5)=f(-2.5+3)=-1f-2.5=-12×-2.5=15.
17.解:(1)因为 ,所以 ,由 ,即 , .……5分
(2)由(1)得:
由 得,当 时,解得 .
当 时,解得 ,所以 的解集为 …10分
18.解:(1)由题 意知: , , .
①当 时, 得 ,解得 .
②当 时,得 ,解得 .
综上, .……4分
(2)①当 时,得 ,解得 ;
②当 时,得 ,解得 .
综上, .……8分
(3)由 ,则 .……12分
19.解:(1)对任意 , ,
故 .……6分
(2)又 ,得 ,即 ,
得 ,解得 .……12分
20.解: (1)∵f(x)是周期为2的奇函数,
∴f(1)=f(1-2)=f(-1)=-f(1),
∴f(1)=0,f(-1)=0 . ……4分
(2)由题 意知,f(0)=0.当x∈(-1,0)时,-x∈(0,1).
由f(x)是奇函数, ∴f(x)=-f(-x)=-2-x4-x+1=-2x4x+1,
综上,f(x)=2x4x+1,x∈0,1,-2x4x+1, x∈-1,0,0, x∈{-1,0,1}.……12分
∴f(x)+f(-x)=0,得f(-x)=-f(x),∴f(x)为奇函数.……6分
(2)设x1则f(x2-x1)=f(x2+(-x1))=f(x2)+f(-x1)=f(x2)-f(x1).
∵x2-x1>0,∴f(x2-x1)<0.∴f(x2)-f(x1)<0,即f(x)在R上单调递减.
∴f(-2)为最大值,f(6)为最小值.
∵f(1)=-12,∴f(-2)=-f(2)=-2f(1)=1,
f(6)=2f(3)=2[f(1)+f(2)]=-3.
∴f(x)在区间[-2,6]上的最大值为1,最小值为-3. ……12分
22.解: (1)令x+bx-b>0,解得f(x)的定义域为(-∞,-b)∪(b,+∞).……2分
(2)因f(-x)=loga-x+b-x-b=logax+bx-b-1
=-logax+bx-b=-f(x),
故f(x)是奇函数.……7分
1、2018年全国统一高考湖北省是使用全国卷的,是否有ab卷目前还没有公布。
2、其实高考考生参加全国统一高考是否有AB卷对考生是没有影响的,即使有AB卷,两份试卷的试题也是完全相同的,只是答题卡顺序有差异而已。

没有。
针对2018年高考全国统一卷(I卷)理科综合科目第8题单选题,被疑存在答案不唯一的问题,已有广东、福建、河南、安徽、江西、湖北、山东、河北、山西、湖南共十个全国卷1适用省份的招生部门明确表示,经研究决定,对该题单选A或单选B的,均给6分。
由此可见2018年湖北省高考是一卷。
高考改革:“3+1+2”方案
应用地区:河北、辽宁、江苏、福建、湖北、湖南、广东、重庆等8省市
改革时间:从2018年秋季入学的高中一年级学生开始实施。
“3”是指:语文、数学、外语是3门必考科目,“1”是指物理、历史选择1科作为必考,但两门只能选择一门,"2"是指再从思想政治、地理、生物、化学四门任意选择2门来学习。
语文、数学、外语、物理、历史以原始分成绩计入总分,思想政治、地理、生物、化学以等级换算分计入总分。
以上内容参考:百度百科-普通高等学校招生全国统一考试
以上内容参考:新华网-十省份明确:高考理综全国I卷第8题选A或B均给6分

以上就是2018文科数学全国一卷的全部内容,在2013年至2018年期间,高考全国一卷文科数学的考点涵盖了多个重要领域,包括函数与导数、数列、立体几何、解析几何、概率统计、三角函数、不等式以及算法与复数等。以下是对这些考点的详细分析(节选部分):一、函数与导数 函数与导数是高考数学中的重要考点,涉及的知识点包括函数的性质(如单调性、内容来源于互联网,信息真伪需自行辨别。如有侵权请联系删除。