高一上学期数学期末试卷?1.sin2的值()A.小于0 B.大于0 C.等于0 D.不存在 2.已知 是角 终边上一点,且 ,则 = ( )A 、 —10 B、 C、 D、3.已知集合 , ,则 ( )A、 B、 C、 D、那么,高一上学期数学期末试卷?一起来了解一下吧。
高一上学期数学期末试卷(一)一、选择题(5′×12=60′) 1.设集合 则满足上述条件的集合A的个数为( ) A.1B.2C.3D.4 2.若 的值为( ) A.1B.3C.15D.30 3.奇函数 的表达式为f(x)=( ) A. B. C. D. 4.设f(x)是定义在R上的偶函数,它在 的解集为( )A.B.(2,+∞) C. D. 5.已知 的取值范围为( ) A.(0,1)B.(1,2)C.(0,2)D. 6.在等差数列中,公差 的值为( ) A. B. C. D.1 7.等差数列中,a10<0, a11>0, a11>|a10|, Sn为前n项和,则有( ) A.S1,S2,…,S10都小于0,S11,S12,…都大于0 B.S1,S2,…,S19都小于0,S20,S21,…都大于0 C.S1,S2,…,S5都小于0,S6,S7,…都大于0 D.S1,S2,…,S20都大于0,S21,S22,…都小于0 8.某商品零售价2000年比1999年上涨25%,欲控制2001年比1999年上涨10%,则2001年比2000年应降价()A.15%B.12%C.10%D.5% 9.设 的值 ( ) A.一定大于零 B.一定小于零 C.小于等于零 D.正负均有可能 10.一等比数列的首项a1=2-5,前11项的几何平均数为25,现从这11项中抽去一项,下余的十项的几何平均数为24,则抽去的一定是(我们将 叫做a1,a2,…an的几何平均数)( ) A.第8项B.第9项C.第10项D.第11项 11.从1998年到2001年期间,甲每年5月1日都到银行存入m元的一年定期储蓄,若年利率为t保持不变且计复利,到2002年5月1日,甲仅去取款,则可取回本息共( ) A. B. C. D. 12.设函数f(x)是实数集上的奇函数,且满足 则f(x)在(1,2)上是( ) A.增函数且f(x)<0B.增函数且f(x)>0 C.减函数且f(x)<0D.减函数且f(x)>0二、填空题(4′×4=16′) 13.已知函数 ,那么 的值为 。

(需要直接的文件可发一封邮件到邮箱729896375@QQ.COM索取)
2007-2008学年度第一学期期末复习试卷
高一数学试题
(考试时间:120分钟
总分160分)
注意事项:
1、本试卷共分两部分,第Ⅰ卷为选择题,第Ⅱ卷为填空题和解答题。
2、所有试题的答案均填写在答题纸上(选择题部分使用答题卡的学校请将选择题的答案直接填涂到答题卡上),答案写在试卷上的无效。
公式:锥体体积V=
sh;
球的表面积S=4πR2;
圆锥侧面积S=πrl
一、填空题:
1.
已知平行四边形ABCD的三个顶点坐标为A(-1,2,3),B(2,-2,3),C(1,5,1),则第四个顶点D的坐标为
.
2.
用“<”从小到大排列
23,
,
,
0.53
.
3.求值:(lg5)2+lg2×lg50=________________。
4.
已知A={(x,y)|x+y-2=0},B={(x,y)|x-2y+4=0},C={(x,y)|y=3x+b},若(A∩B)
C,则b=_____
5.
已知函数
是偶函数,且在(0,+∞)是减函数,则整数
的值是
.
6.
如图,假设
,
⊥
,
⊥
,垂足分别是B、D,如果增加一个条件,就能推出BD⊥EF。现有下面3个条件:
①
⊥
;
②
与
在
内的射影在同一条直线上;
③
‖
.
其中能成为增加条件的是
.(把你认为正确的条件的序号都填上)
7.(1)函数
的最大值是
(2)函数
的最小值是
8.
,
是两个不共线的向量,已知
,
,
且
三点共线,则实数
=
9.已知
,
(
),且|
|=|
|(
),则
.
10.对于函数
,给出下列四个命题:①存在
(0,
),使
;②存在
(0,
),使
恒成立;③存在
R,使函数
的图象关于
轴对称;④函数
的图象关于(
,0)对称.其中正确命题的序号是
11.函数
的最小正周期是
。
高一期末考试数学试题
一、选择题:(每小题5分,共60分)
1、过点(-1,3)且垂直于直线x-2y+3=0的直线方程是( )
A、x-2y+7=0 B、2x+y-1=0
C、x-2y-5=0 D、2x+y-5=0
2、如图,一个空间几何体的主视图和左视图都是边长相等的正方形,
俯视图是一个圆,那么这个几何体是( )、
A、棱柱 B、圆柱 C、圆台 D、圆锥
3、 直线 :ax+3y+1=0, :2x+(a+1)y+1=0, 若 ∥ ,则a=( )
A、-3 B、2 C、-3或2 D、3或-2
4、已知圆C1:(x-3)2+y2=1,圆C2:x2+(y+4)2=16,则圆C1,C2的位置关系为( )
A、相交 B、相离 C、内切 D、外切
5、等差数列{an}中, 公差 那么使前 项和 最大的 值为( )
A、5 B、6 C、 5 或6 D、 6或7
6、若 是等比数列, 前n项和 ,则 ( )
A、 B、
7、若变量x,y满足约束条件y1,x+y0,x-y-20,则z=x-2y的最大值为( )
A、4 B、3
C、2 D、1
本文导航 1、首页2、高一第二学期数学期末考试试卷分析-23、高一第二学期数学期末考试试卷分析-3
8、当a为任意实数时,直线(a-1)x-y+a+1=0恒过定点C,则以C为圆心,半径为5的圆的方程为( )
A、x2+y2-2x+4y=0 B、x2+y2+2x+4y=0
C、x2+y2+2x-4y=0 D、x2+y2-2x-4y=0
9、方程 表示的曲线是( )
A、一个圆 B、两个半圆 C、两个圆 D、半圆
10、在△ABC中,A为锐角,lgb+lg( )=lgsinA=-lg , 则△ABC为( )
A、 等腰三角形 B、 等边三角形 C、 直角三角形 D、 等腰直角三角形
11、设P为直线 上的动点,过点P作圆C 的两条切线,切点分别为A,B,则四边形PACB的面积的最小值为( )
A、1 B、 C、 D、
12、设两条直线的方程分别 为x+y+a=0,x+y+b=0,已知a,b是方程x2+x+c=0的两个实根,
且018,则这两条直线之间的距离的最大值和最小值分别是( )、
A、 B、 C、 D、
第II卷(非选择题共90分)
二、填空题:(每小题5分,共20分)
13、空间直角 坐标系中点A和点B的坐标分别是(1,1,2)、(2,3,4),则 ______
14、 过点(1,2)且在两坐标轴上的截距相等的直线的方程 _
15、 若实数 满足 的取值范围为
16、锐角三角形 中,若 ,则下列叙述正确的是
① ② ③ ④
本文导航 1、首页2、高一第二学期数学期末考试试卷分析-23、高一第二学期数学期末考试试卷分析-3
三、解答题:(其中17小题10分,其它每小题12分,共70分)
17、直线l经过点P(2,-5),且与点A(3,-2)和B(-1,6)的距离之比为1:2,求直线l的方程、
18、在△ABC中,a,b,c分别是A,B,C的'对边,且2sin A=3cos A、
(1)若a2-c2=b2-mbc,求实数m的值;
(2)若a=3,求△ABC面积的最大值、
19、投资商到一开发区投资72万元建起一座蔬菜加工厂,第一年共支出12万元,以后每年支出增加4万元,从第一年起每年蔬菜 销售收入50万元、 设 表示前n年的纯利润总和(f(n)=前n年的总收入一前n年的总支出一投资额)、
(1)该厂从第几年开始盈利?
(2)若干年后,投资商为开发新项目,对该厂有两种处理方案:①年平均纯利润达到最大时, 以48万元出售该厂;②纯利润总和达到最大时,以10万元出售该厂,问哪种方案更合算?
20、 设有半径为3 的圆形村落,A、B两人同时从村落中心出发,B向北直行,A先向东直行,出村后不久,改变前进方向,沿着与村落周界相切的直线前进,后来恰与B相遇、设A、B两人速度一定,其速度比为3:1,问两人在何处相遇?
21、设数列 的前n项和为 ,若对于任意的正整数n都有 、
(1)设 ,求证:数列 是等比数列,并求出 的通项公式。
等差数列,则a4+a7=a5+a6,由已知有a4+a7=28a4a7=187则a4= 11, a7=17 或a4= 17, a7=11则d=2或者-2,a14=31或-9

高一(上)数学期末考试试题(A卷)
班级
姓名
分数
一、
选择题(每小题只有一个答案正确,每小题3分,共36分)
1.已知集合M={
},集合N={
},则M
(
)。
(A){
}
(B){
}
(C){
}
(D)
2.如图,U是全集,M、P、S是U的三个子集,则阴影部分所表示的集合是(
)
(A)(M
(B)(M
(C)(M
P)
(CUS)
(D)(M
P)
(CUS)
3.若函数y=f(x)的定义域是[2,4],y=f(log
x)的定义域是(
)
(A)[
,1]
(B)[4,16]
(C)[
]
(D)[2,4]
4.下列函数中,值域是R+的是(
)
(A)y=
(B)y=2x+3
x
)
(C)y=x2+x+1
(D)y=
5.已知
的三个内角分别是A、B、C,B=60°是A、B、C的大小成等差数列的(
)
(A)充分非必要条件
(B)必要非充分条件
(C)充要条件
(D)既非充分也非必要条件
6.设偶函数f(x)的定义域为R,当x
时f(x)是增函数,则f(-2),f(
),f(-3)的大小关系是(
)
(A)f(
)>f(-3)>f(-2)
(B)f(
)>f(-2)>f(-3)
(C)f(