高中数学教学案例?高中数学教学反思案例篇一 数学 教育 不仅关注学习结果,更关注结果是如何发生、发展的。从教学目标来看,每节课都有一个最为重要的、关键的、处于核心地位的目标。高中数学不少教学内容适合于开展研究性学习。从学习的角度来看,教学组织形式是教学设计关注的一个重要问题。那么,高中数学教学案例?一起来了解一下吧。
陈海山老师作为高宏教育的人气高中数学教师,凭借多年教学经验总结出“放平心态,找对方法”的核心教育理念,通过分层教学、效率提升和综合复习策略帮助学生突破数学瓶颈,其班级本科上线率近80%,本一上线率近40%,培养出众多985、211高校学子。
一、分层教学:因材施教,精准提升陈海山老师根据学生成绩差异实施分层教学策略:
针对成绩优异的学生:重点培养严谨的逻辑思维与综合分析能力。例如,通过复杂题型的拆解训练,引导学生构建知识网络,提升解题的系统性。
针对基础薄弱的学生:强化基础知识应用能力与举一反三的变式能力。例如,从基础公式推导入手,设计阶梯式练习题,帮助学生逐步掌握核心概念。
分层教学策略帮助学生根据自身水平制定学习计划,避免“一刀切”的无效努力。二、心态调整:拒绝自我放弃,建立成长型思维陈老师强调心态对学习效果的决定性作用:
避免因短期成绩波动否定自我:他以“水滴石穿,笨鸟勤飞也能穿越大海”为座右铭,鼓励学生通过持续努力弥补差距。

数学教育叙事案例有哪些,哪里可以借鉴的呢?以下是我为您整理数学教育叙事案例,供您参考,希望对你有所帮助,更多详细内容请点击查看。
数学教育叙事案例1
说来从事高中数学教学已经几年有余了,谈及自己的教学经历和教学方法,自己感想颇多,现在的我比较注意在教学的每个环节中全面考虑学生的认知因素,情感因素的彼此交融,彼此协调,从而使自己能够顺利完成教学的目标。这一举措的实施,使我的教学的效果获得了全面的提升,并且我的课堂也朝气洋溢,充满活力,学生的学习兴趣也变得越来越浓厚。
记得在一次上课时,那时是在讲数列问题,是要求学生把握通过观察法求数列的通项公式,课堂上我出了几道题让学生练习,要求学生通过前几项的规律归纳总结出数列的通项公式,在巡视过程中发现这些题普遍做的不好,即使班上的好学生也冥思苦想,当时我感到很纳闷。在课后,我做了仔细的思考和调查,发现学生遇到此类不懂的题目时就一筹莫展,真有点盲人摸象的感觉。就连优等生也感到有些茫然。但是学生到感到很有兴趣,都能很认真的在思考。她们都以为此题看似简单解起来为什么却如此之难。看到学生学习情感和立场,我由衷的感到开心。我给学生提示:数学题,可以分为两大类,一类是应用数学规律题,一类是发现数学规律题。

1.高三数学上册教案范例
一、复习内容
平面向量的概念及运算法则
二、复习重点
向量的概念及运算法则的运用及其用向量知识,实现几何与代数之间的等价转化。
三、具体教学过程
1.学生准备课前预习回家做作业。其具体步骤是:相应知识的系统梳理;典型例题的摘录;搜集平时作业,测验作业中存在的典型错误;提出针性训练的练习题;准备思考题,以及家庭作业。学生的准备可以从中选择一项,学有余力的同学可以多选。
2.学生可以分为出题组、答题组和归纳组(每组3~4人),三个小组又可构成一个大的探究组,各小组的角色在其过程中可以互换;教师从旁引导,控制教学节奏,并有机、适时地对有争议的问题或引起认知冲突的部分作相应的释疑,最后选出具有代表性的题目和表达最完整的归纳展示给学生。
出题组:在教师的引导下,确立出题意图后,可以自编或在课本、资料中寻找适当的例题。
答题组:迅速给出题目答案或解题思路步骤(由学生自己讲解),同时确立该题所考察的知识点和方法,并互相讨论解题过程中的易错点和容易忽视的问题。
归纳组:对照相应的问题,归纳出解决问题的关键和方法及其需要注意的事项。并以书面的形式给出,可充分利用投影的方式展示给学生。

《正弦定理》教学案例分析
一、教学内容:
本节课主要通过对实际问题的探索,构建数学模型,利用数学实验猜想发现正弦定理,并从理论上加以证实,最后进行简单的应用。
二、教材分析:
1、教材地位与作用:本节内容安排在《普通高中课程标准实验教科书.数学必修5》(A版)第一章中,是在高二学生学习了三角等知识之后安排的,显然是对三角知识的应用;同时,作为三角形中的一个定理,也是对初中解直角三角形内容的直接延伸,而定理本身的应用(定理应用放在下一节专门研究)又十分广泛,因此做好该节内容的教学,使学生通过对任意三角形中正弦定理的探索、发现和证实,感受“类比--猜想--证实”的科学研究问题的思路和方法,体会由“定性研究到定量研究”这种数学地思考问题和研究问题的思想,养成大胆猜想、善于思考的品质和勇于求真的精神。
2、教学重点和难点:重点是正弦定理的发现和证实;难点是三角形外接圆法证实。
三、教学目标:
1、知识目标:
把握正弦定理,理解证实过程。
2、能力目标:
(1)通过对实际问题的探索,培养学生数学地观察问题、提出问题、分析问题、解决问题的能力。
(2)增强学生的协作能力和数学交流能力。
(3)发展学生的创新意识和创新能力。
高中数学教学案例
课题:抛物线的概念
教学过程:
师:上几节课我们学习了椭圆、双曲线的概念,同学们还记得这两种曲线的定义吗?(学生很快回答了这两种曲线的第一定义)
师:能把这两种曲线的定义统一起来吗?
生:平面内与一个定点的距离和一条定直线的距离的比是常数e,当0<e<1时的点的轨迹为椭圆,当e>1时的轨迹是双曲线。
师:那么当e=1时又会是什么轨迹呢(学生议论纷纷)。今天我们就来学习当e=1时的轨迹——抛物线。
接下来,教师运用教具进行演示,得出轨迹图形后,运用以前学过的求轨迹的方法,得出抛物线的方程,接着学生做课堂练习,教师小结,并强调注意的问题,布置作业。
学生反馈记录(下午自习课):
生A:(拿出作业本):老师,可不可以帮我补一补今天早上的上课内容?
师:好呀!你先说说哪个部分不太清楚?
生A:讲讲这个作业题:平面内一动点P到直线2x+3y-5=0和到点M(1,1)的距离相等,则P点的轨迹为 ( ) A椭圆 B双曲线C抛物线D直线 。为什么我选C,生B说不对。
生B:她压根就没听课,一节课都在那发呆。
生A:冤枉!我一直都在认真听讲,老师讲的内容,我都记得呢。
师:你们两个可以互相交流一下学习心得的嘛,比如说生B,你完全可以告诉生A为什么不能选C呀!
生B:我刚才教了,但她说,她是按课本上讲的定义作的,为什么按定义作也会错呢?老师,其实我也觉得这个定义好象有点问题,为什么课本上的定义不说明点不能在直线上这一点呢,我也是记住了你说的注意点才知道是选D的,当她说要来问的时候,我就想:再听一遍可能心里会踏实些,
以上就是高中数学教学案例的全部内容,高中数学教学案例 课题:抛物线的概念 教学过程:师:上几节课我们学习了椭圆、双曲线的概念,同学们还记得这两种曲线的定义吗?(学生很快回答了这两种曲线的第一定义)师:能把这两种曲线的定义统一起来吗?生:平面内与一个定点的距离和一条定直线的距离的比是常数e,内容来源于互联网,信息真伪需自行辨别。如有侵权请联系删除。