高一数学必修一笔记?高中数学必修一 第3章 函数基本知识点汇总(新高一预习笔记)知识点一 映射与函数映射的定义:对于两个非空集合A,B,若存在对应法则f,使得对每个x∈A都有唯一确定的y∈B与之对应,则称对应法则f是从A到B的映射,记为f:A→B,其表达形式为y=f(x),x∈A。函数的三要素:定义域、对应法则、值域。那么,高一数学必修一笔记?一起来了解一下吧。
高中数学必修一 第5章 三角函数基本知识点汇总(新高一预习笔记)知识点一 任意角
正角与负角:一条射线绕其端点按逆时针方向旋转的角叫正角,按顺时针方向旋转的角叫负角。
零角:没有旋转的射线叫零角,零角的始边与终边重合。若旋转量相等,则两角相等。
终边相同的角:所有与∠α终边相同的角构成的集合为{β|β=α+k·360°,k∈Z}。
知识点二 弧度制定义:角度制使用角度,一度是一周角的1/360,弧度制使用弧度。
1弧度的定义:长度等于半径长的圆弧对应的圆心角叫1弧度的角,单位是rad,读作弧度,通常省略。
弧长与圆心角的关系:在半径为r的圆中,弧长l所对的圆心角为α,则有l=|α|·r。
正负角与零角的弧度:正角弧度数为正值,负角弧度数为负值,零角弧度数为0。半径为1的圆是单位圆。
角度制与弧度制的换算:1°=π/180,1rad=(180/π)°。

高中数学必修一中的函数基本知识点包括映射与函数、常见函数的定义域与值域、区间、函数的基本性质、函数表示法、分段函数、单调性、函数的最大值与最小值、函数的奇偶性、周期函数、幂函数及零点。
映射与函数定义为对于两个非空集合A、B,存在对应法则f,使得对每个x∈A都有唯一确定的y∈B与之对应。记为f:A→B,表达式为y=f(x),x∈A。函数的三要素为定义域、对应法则、值域,三者相同则两函数相同。
常见函数的定义域与值域知识涉及区间表示,如闭区间[a,b]、开区间(a;b)、半开半闭区间[a,b),(a,b]等。
函数的基本性质包括函数的单调性、最大值与最小值、奇偶性以及周期性。
函数可以有多种表示法,如解析法、列表法和图象法。
分段函数对于自变量x的不同取值范围有不同对应解析式。常见分段函数包括取整函数、符号函数、绝对值函数等。
函数值随自变量增大而增大(或减小而减小)的性质称为函数的单调性。函数在定义域上单调递减或单调递增称为单调性,其单调区间可表示为一个闭区间或开区间。
函数的最大值与最小值定义为对于定义域D中所有x值,存在M,使得f(x)≤M或f(x)≥M,且存在x0,使得f(x0)=M。
函数的奇偶性分为偶函数和奇函数。
高一网权威发布高一如何做数学笔记,更多高一如何做数学笔记相关信息请访问高一网。
【导语】高一数学是高考的基础,掌握数学知识点将对高考复习起到重要作用,为方便同学们复习高一数学知识点,大范文网整理了高一如何做数学笔记,供同学们参考学习。
从初中升入高中,在数学学习上有一个飞跃。其表现在所学内容更多,难度更大,思维要求更高。因而学好高中数学,要求学生对数学问题的理解和处理要更具系统化、理性化和成熟化。
学好高中数学,在学习方法上要有所转变和改进。而做好数学笔记无疑是非常有效的环节。善于做数学笔记,是一个学生善于学习的反映。那么,数学笔记究竟该记些什么呢?
一记内容提纲
老师讲课大多有提纲,并且讲课时老师会将一堂课的线索脉络、重点难点等,简明清晰地呈现在黑板上,同时,教师会使之富有条理性和直观性。记下这些内容提纲,便于课后复习回顾,整体把握知识框架,对所学知识做到胸有成竹,清晰完整
二记疑难问题
将课堂上未听懂的问题及时记下来,便于课后请教同学或老师,把问题弄懂弄通。教师在组织课堂教学时,受到时空的限制,不可能做到顾及每一位同学。相应的,一些问题对部分学生来说,是属于疑难问题,由于课堂上来不及思考成熟,记下疑难问题,可在课后继续加以思考和探究,加以理解和掌握,不致出现知识的断层、方法的缺陷。

高中数学必修一 第3章 函数基本知识点汇总(新高一预习笔记)知识点一 映射与函数
映射的定义:对于两个非空集合A,B,若存在对应法则f,使得对每个x∈A都有唯一确定的y∈B与之对应,则称对应法则f是从A到B的映射,记为f:A→B,其表达形式为y=f(x),x∈A。
函数的三要素:定义域、对应法则、值域。三者相同则两函数相同。
定义域与值域:A称为映射f(函数f(x))的定义域,与x相对应的y值称为函数值,{f(x)|x∈A}称为映射f(函数f(x))的值域。
映射与函数的关系:映射是集合与集合的对应关系,数集与数集的对应关系即为函数。
知识点二 常见函数的定义域、值域常见函数的定义域与值域:
一次函数:定义域为全体实数R,值域也为全体实数R。
二次函数:定义域为全体实数R,值域取决于开口方向和顶点坐标。
反比例函数:定义域为{x|x≠0},值域也为{y|y≠0}。
指数函数:定义域为全体实数R,值域为(0,+∞)。
对数函数:定义域为(0,+∞),值域为全体实数R。
学习数学做好课堂笔记至关重要,下面是我整理的高一数学学霸笔记相关内容,来看一下!
高一数学学霸笔记
怎样做数学笔记
(一)记提纲
老师讲课大多有提纲,并且讲课时老师会将备课提纲书写在黑板上,这些提纲反映了授课内容的重点、难点,并且有条理性,因而比较重要,故应记在笔记本上。
(二)记问题
将课堂上未听懂的问题及时记下来,便于课后请教同学或老师,把问题弄懂弄通。
(三)记疑点
对老师在课堂上讲的内容有疑问应及时记下,这类疑点,有可能是自己理解错误造成的,也有可能是老师讲课疏忽造成的,记下来后,便于课后与老师商榷。
(四)记方法
勤记老师讲的解题技巧、思路及方法,这对于启迪思维,开阔视野,开发智力,培养能力,并对提高解题水平大有益处。
(五)记总结
注意记住老师的课后总结,这对于浓缩一堂课的内容,找出重点及各部分之间的联系,掌握基本概念、公式、定理,寻找存在问题、找到规律,融会贯通课堂内容都很有作用。
以上就是高一数学必修一笔记的全部内容,高中数学必修一 第5章 三角函数基本知识点汇总(新高一预习笔记)知识点一 任意角正角与负角:一条射线绕其端点按逆时针方向旋转的角叫正角,按顺时针方向旋转的角叫负角。零角:没有旋转的射线叫零角,零角的始边与终边重合。若旋转量相等,则两角相等。内容来源于互联网,信息真伪需自行辨别。如有侵权请联系删除。